EGFR and K-RAS mutation analysis

Daniëlle A.M. Heideman, PhD
Department of Pathology, VUmc
dam.heideman@vumc.nl

Increasing evidence points to the mutational status of EGFR and K-ras genes as effective molecular predictors for prediction of responsiveness and efficacy of EGFR-targeted therapies (moAb or TKIs).

Mechanisms of Inhibiting the EGFR Axis

Inhibition Strategies:
- EGFR-TK inhibitors
- Anti-EGFR mAb

Prediction of responsiveness and efficacy of EGFR-targeted therapies (moAb or TKIs)

-> Increasing evidence points to the mutational status of EGFR and K-ras genes as effective molecular predictors.
As a consequence, mutational screening tests for K-ras and EGFR may provide a direct and valuable guidance for clinicians to make decision on EGFR-targeted therapies.

Current indications (January 2010; may change in time)
1) EGFR x19/x21 -> EGFR-TKI lung cancer
2) K-ras -> contra anti-EGFR moAb colorectal cancer

Mutational analysis
Requirements for use in clinical / diagnostic setting include, amongst others:
- validated assay
- sufficient sensitivity
 limiting factors:
 - paraffin material (cross-linked and/or fragmented DNA)
 - tumor cell % -> enrichment by macro/micro-dissection
 - limiting amount of material (biopsies/cytology)
- high-throughput / non time-consuming
- cost-effective
Variety of assays

In-house assays and commercial assays
- (nested-) PCR following cycle sequencing
- fragment analysis / RFLP
- SNaPshot primer extension assay
- point-EXACCT
- real time PCR
- melting analysis
- PCR followed by strip hybridisation

Some of which will be discussed below.
High Resolution Melting (HRM)

The melting curve of a PCR product depends on o.a.
- GC content
- length
- sequence
- heterozygosity

-> Different genetic sequences melt at slightly different rates

Comparing the melting curve of a specimen to a reference (wild type) allows scanning for any sequence variation

-> Pre-screen assay with possibility to sequence PCR products to confirm genotype

HRM EGFR/K-ras panel

Panel of HRM assays to prescreen for mutations:

- K-ras x1 -> a.o. codon 12/13
- K-ras x2 -> a.o. codon 61
- EGFR x19 -> a.o. deletions
- EGFR x20p -> a.o. ins 770/771
- EGFR x20d -> a.o. T790M
- EGFR x21 -> a.o. L858R

Kramer et al. 2009
Heideman et al. 2009
Procedure of mutation detection by HRM

1) run cycling and melting program
2) check for correct amplification curves
3) check for melting curves and melting peaks (amplimer area and probe area, if applicable)
4) evaluate normalized, temperature-shifted difference plot (amplimer)

Analytical performance:
High analytical sensitivity of HRM and subsequent sequencing

example: K-ras exon 1 (G12C) 2.5-5% mutant DNA in a background of wt can be well discriminated from background/noise signal

Kramer et al. Cell Oncol 2009

Performance of HRM on DNA isolated from FFPE-tissue in comparison to conventional nested-PCR/sequencing

1. High genotype agreement of HRM following sequencing with conventional nested-PCR following cycle-sequencing (kappa > 0.95)
2. Less-test failures
3. More mutations detected by HRM (likely related to the higher sensitivity as compared to conventional assay)

*Kramer et al. 2009
Heideman et al. 2009*

K-ras: high genotyping agreement of HRM with conventional cycle sequencing assay

Overall agreement in genotyping: kappa values of 99.3%

Kramer et al. 2009
Conclusion

Increased interest in mutation analysis in MD in PA

Current indications (January 2010; may change in time)
1) EGFR x19/x21 -> EGFR-TKI lung cancer
2) K-ras -> contra anti-EGFR moAb colorectal cancer

Novel indications likely (b-raf, PIK3CA,)

Variety of assays available

Molecular assay useful in clinical/ diagnostic setting
- applicable to routine material (FFPE / cytology)
- sensitive: low-abundant mutants detectable
- fast and accurate
- prescreen technique -> high throughput
- allows for genotyping

EGFR: high genotyping agreement of HRM with conventional cycle sequencing assay

<table>
<thead>
<tr>
<th>Sample</th>
<th>WT</th>
<th>Exon 19</th>
<th>Exon 21</th>
<th>Exon 19</th>
<th>Exon 21</th>
<th>Insert</th>
<th>Del</th>
<th>Ins</th>
<th>Del/Ins</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>22</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>ERBB2</td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>ERBB4</td>
<td>0</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PDGFR</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MET</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EGFR</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NEDD</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>13</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Heideman et al. 2009

Acknowledgements

Departments of Pathology & Medical Oncology & Pulmonary Diseases

Special thanks to the technicians of the Molecular Pathology Unit, Histopathology and Cytology Unit

Contact: dam.Heideman@vumc.nl